

DEPARTMENT OF COMPUTER SYSTEM ENGINEERING Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad Lecture #3 Introduction IC Manufacturing and Design Metrics CMOS

Digital Integrated Circuits

	Subject
1	Introduction to Digital Integrated Circuits Design
2	Semiconductor material: pp-junction_NMOS_PMOS
3	IC Manufacturing and Design Metrics CMOS
4	Transistor Devices and Logic Design
	The CMOS inverter
5	Combinational logic structures
6	Sequential logic gates; Latches and Flip-Flops
7	Layout of an Inverter and basic gates
8	Parasitic Capacitance Estimation
9	Device modeling parameterization from I-V curves.
	Short Test
10	Arithmetic building blocks
11	Interconnect: R, L and C - Wire modeling
12	Timing
	Power dissipation;
13	SPICE Simulation Techniques (Project)
14	Memories and array structures
	Midterm
15	Clock Distribution
16	Supply and Threshold Voltage Scaling
17	Reliability and IC qualification process
18	Advanced Voltage Scaling Techniques
19	Power Reduction Through Switching Activity Reduction
20	CAD tools and algorithms

Final & Project discussion

)

Productivity Trends

- Technology shrinks by 0.7/generation
- With every generation can integrate 2x more
- functions per chip; chip cost does not increase significantly
- Cost of a function decreases by 2x
- How to design chips with more and more functions?
- Design engineering population does not double every two years...
- Need to understand different levels of abstraction

IC Manufacturing Process

Largest IC Foundries

	TSMC	Taiwan Semiconductor Manufacturing Company
GLOBALFOUNDRIES"	GF	Global Foundries
UMC	UMC	United Microelectronics
SAMSUNG	Samsung	Samsung
SMIC	SMIC	Semiconductor Manufacturing International Corporation
TOWERJAZ	TowerJazz	Tower Semiconductor
elmos	ELMOS	Elmos Semiconductor AG
XFAB	XFAB	Mixed-Signal Foundry Expert

The MOS Transistor

• 3D Perspective

Cross-Sectional View

Transistor Layout

Photo-Lithographic Process

https://www.youtube.com/watch?v=UvluuAliA50

https://www.youtube.com/watch?v=_bhEDQzNQ-c

CMOS Process

Patterning of SiO2

CMOS Process Walk-Through

 Please read the rest from the book (process engineer)

(a) Base material: p+ substrate with p-epi layer

(b) After deposition of gate-oxide and sacrificial nitride (acts as a buffer layer)

(c) After plasma etch of insulating trenches using the inverse of the active area mask

Advanced Metallization

Real Image from silicon

Dual damascene IC process

Design Rules

- Interface between designer and process engineer
- Guidelines for constructing process masks
- Unit dimension: Minimum line width
- scalable design rules: lambda parameter
- absolue dimensions (micron rules)

CMOS Process Layers • Layers in 0.25 μm CMOS process

We will talk more a bout this in layout section in the coming lectures 13

Video

- Sand to silicon
- <u>https://www.youtube.com/watch?v=qm67w</u>
 <u>bB5Gml</u>

https://www.youtube.com/watch?v=gcIWcX3G6-U

https://www.youtube.com/watch?v=NKYgZH7SBjk

Design Metrics

- How to evaluate performance of a digital
- circuit (gate, block, ...)?
 - Area/Cost
 - Reliability
 - Scalability
 - Speed (delay, operating frequency)
 - Power dissipation
 - Energy to perform a function

Cost of Integrated Circuits

- NRE (non-recurrent engineering) costs
 - design time and effort, mask generation
 - one-time cost factor
- Recurrent costs
 - silicon processing, packaging, test
 - proportional to volume
 - proportional to chip area current costs

Die Cost & Cost per Transistor

Yield & Defects

Some Examples (1994)

Chip	Metal layers	Line width	Wafer cost	Def./ cm ²	Area mm²	Dies/ wafer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486 DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
Power PC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super Sparc	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

Evaluation of Technological Processes

Technological processes are defined by the minimum length (L) of CMOS transistor channel

Examples of technological processes:

- TSMC 90nm G Logic 1.0V/3.3V
- SMIC 90nm LL Logic 1.2V/3.3V
- SMIC 130nm LV Logic 1.0V/3.3V
- Samsung 90nm LP Logic 1.2V/3.3V
- UMC 90nm LL Logic 1.2V/2.5

90nm technology – Lmin=90nm 45nm technology – Lmin=45nm 22nm technology – Lmin=22nm

- G generic
- LL low leakage
- LV low voltage
- LP low power

IC Fabrication at a Glance

- Growing of a giant crystal of silicon
- Slicing it up into round wafers and polish them
- Coating of a wafer with a photographic chemical that hardens when exposed to light
- Taking a picture of a pattern to embed in the silicon

IC Fabrication at a Glance (2)

• Shrinking of the picture and shining a light through it

- Dipping of the wafer in acid to etch away the soft parts
- Repetition of steps 3 6 many times, producing layers of patterns etched into the wafer
- Cut up of the wafer into many rectangle chips
- Gluing of the chip into a plastic package

IC Fabrication at a Glance (3)

- Connection of chip parts to the pins of the package with tiny gold wires
- Putting of the chip on a tester machine and test running
- Assembly of different kinds of chips onto a board
- Installation of the board into a phone, computer...

General Technology Flow Diagram

- Complete IC fabrication process has many individual processing steps (>100) and can take several weeks to carry out.
- Each process step is accurately controlled in order to give acceptable overall result (high process yield).

Fabrication: Key Requirements

General

- High reliability
- Cost effectiveness
- Safeness for personal and environment
- High reproducibility

Private

- High purity materials and reagents are needed
- Manufacturing process carried out in clean rooms and local volumes, which is extremely important
- Contamination control in clean rooms

Examples of Devices Used During IC Fabrication

Photolithography stepper

Gas cabinet

Wire bonder system

Wafer probe

Examples of Devices Used During IC Fabrication (2)

Defects and Yield

Clean Rooms

- IC Fabrication requires special conditions
- Rooms with fabrication equipment should be clean of particles

Class	maximum particles/m ³				
	≥0.1 µm	≥0.3 µm	≥5 µm		
ISO 1	10	1.02	0.0029		
ISO 2	100	10.2	0.029		

TSMC's 12-inch Gigafab[™]

- Cost: \$9.3b
- Total area of site: 184,000 m²
- Building area: 430,000 m²
- Clean room area: 104,000 m²

Source: Engadget

Design Solution for Yield

Lithography

Silicon Technology = Lithography

- Lithography is a basic method of IC fabrication process.
- Process is used to transfer patterns from masks to each layer of the IC on the surface of a wafer by employing a photosensitive, chemically resistant layer (photoresist).
- Masks are created using the layout information provided by the designer.
- The lithographic process is repeated for each physical layer, but the process sequence is always the same:

- Photoresist application
- Exposure (contact or projection)
- Development
- Etching

Photolithographic Process

https://www.youtube.com/watch?v=AMgQ1-HdEIM

https://www.youtube.com/watch?v=UvluuAliA50

Steps of Photolithography

Mask Types

 Masks can be negative or positive depending of the type of photoresist material

Mask Example

N-well Process mask

n-well mask (top view)

Diffusion or ion implantation

Mask Example (2)

Gate mask

Fabrication Process

Thermal oxidation

Photolithography

Fabrication Process (2)

Boron ion implantation

Photolithography

Fabrication Process (3)

Gate oxide formation (SiO_2)

Polysilicon deposition, photolithography (gates and wires)

Fabrication Process (4)

Photolithography

Oxidation and sequentially accepter and donor ion implantation

Fabrication Process (5)

Glass deposition (interlayer isolation)

Contact windows formation

Fabrication Process (6)

Metal layer deposition (Al, Cu) and photolithography

Mask Data Generation

- Mask data, used in CMOS process, can be generated by a Layout Editor tool (for example, Custom Compiler LE).
- Layout design rules: There are constraints on the shape, size and spacing of the layer. The objective is to obtain a circuit with the best possible compromise between performance and yield.
- Example processes. Each has its own design rules.
 - TSMC 90nm G Logic 1.0V/3.3V
 - SMIC 90nm LL Logic 1.2V/3.3V
 - SMIC 130nm LV Logic 1.0V/3.3V
 - Samsung 90nm LP Logic 1.2V/3.3V
 - UMC 90nm LL Logic 1.2V/2.5

G – generic LL – low leakage LV – low voltage LP – low power

Abstract Layers

- CMOS process is complex
- Hard to draw all masks during the layout design
- Masks are represented by a few number of layout levels (abstract layers)
- Abstract layer are represented by:
 - Color scheme
 - Stipple patterns
 - Line styles
- Layer assignments:
 - Layers are converted to mask data

Layers

Layers: N-Well

Layers: Active

Layers: Gate

8 Digital INV layout* (Editing) - Layout Editor - Custom Compiler	synopsys _ 🗗 🗙	
😙 💷 Library Manager 🗵 🌳 INV layout 🖸 🕂		
Tools Design View Create Edit Connectivity Options Verification Window Help		
X: 1.719 Y: 0.920 DX: 0.000 DH: 0.000 Election: 0 GI full Constraint Group:		
🛿 🖻 🐚 🗢 🖬 🖨 踊 🔍 🍳 🍳 🔍 💭 🔟 🕼 🔝 👘 👭 🕺 🎊 🥵 🌮 🔶 Digital/INV/layout 💿 ≑ 💿 🏪		
(No Command) History: 🏠 🖼 🔫 🚇 🔀		
	Property Editor 🛛 🗷	
	🔍 🕨 🗸 – 🏹 » 🕑	
	Current Design	
	→ Attributes	
	Prompt Value	
	Library Name Digital	
	View Name layout	
	Cell Type none	
	71	
		Coto
		Gale
	-> Properties	
	Object/Laye Property	
	💠 🗸 🕅 NWELL drawing 😂	

Layers: Contact

Layers: Metal

Design Rules: Necessity

- Interface between the circuit designer and process engineer
- Guidelines for constructing process masks
- Rules constructed to ensure that design works even when small fabrication errors occur

Design Rules: Example

Design Rules: Example (2)

- a. Minimum enclosure in the result of combination of dopant or overhead layers
- b. Minimum spaces between objects on the same layer to ensure they will not short after fabrication
- c. Provision of minimum overlap of layers
- d. Minimum dimensions of objects on each layer to maintain that object after fabrication

Design Rules: Example (3)

- a minimum width
- b, e, g, h minimum spacing
- c, f minimum enclosure
- d minimum overlap

Design Rules: Classification

All other design rules are expressed in whole multiples of I

Design Rules: Transistor Layout

Design Rules: Design Rule Checker

Formation of the n-diffusions

- Pattern oxide and form n+ regions
- Self-aligned process (poysilicon gate) "blocks" diffusion under the gate
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

The n-diffusions

- Historically dopants were diffused
- Usually ion implantation today (but regions are still called diffusion)

Strip off oxide to complete patterning step

- Now we need to create the devices' terminals
- Cover chip with thick field oxide (FOX)
- · Etch oxide where contact cuts are needed

The p-diffusions

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Metallization

- Sputter on aluminum over whole wafer, filling the contacts as well
- Pattern to remove excess metal, leaving wires

Design Metrics - Reliability—Noise in Digital Integrated Circuits

 Will talk more about noise and reliability in coming sections

Design Metrics- Power Dissipation

- Instantaneous power:
- $p(t) = v(t)i(t) = V_{supply}i(t)$
- Peak power:
- *P*peak = *V*supply*i*peak
- Average power:

$$P_{ave} = \frac{1}{T} \int_{t}^{t+T} p(t) dt = \frac{V_{supply}}{T} \int_{t}^{t+T} i_{supply}(t) dt$$

• Extra slides reading

Deposit silicon-oxide and photoresist

- Photoresist is a light-sensitive organic polymer
- Softens where exposed to light

		Photoresist
\frown		SiO ₂
(
	p substrate	

NOTE: The silicon oxide is just to protect the wafer

Photo-Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etching

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone: nasty stuff!!!
- Only attacks oxide where resist has been exposed

The n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implantation
 - Blast wafer with beam of As ions
 - lons blocked by SiO₂, only enter exposed Si

Strip protective oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

p substrate	n well	
-------------	--------	--

Gate oxide and Polysilicon

- Deposit very thin layer of gate oxide < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon patterning

Use same lithography process to pattern polysilicon

Self-aligned polysilicon gate process

- The polysilicon gate serves as a mask to allow precise alignment of the source and drain with the gate
- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- n-diffusion forms nMOS source, drain, and n-well contact

